Influence of 3D Cloud Effects on Satellite-Derived Earth Radiation Budget Estimation

Norman G. Loeb

Hampton University/NASA Langley Research Center Hampton, VA

October 14, 2005, Kiel, Germany

CERES Instrument

- 5 instruments on 3 satellites (TRMM, Terra, Aqua) for diurnal and angular sampling.
- Narrow field-of-view scanning radiometer with nadir footprint size of 10 km (TRMM); 20 km (Terra & Aqua).
- Measures radiances in 0.3-5 μm, 0.3-200 μm and 8-12 μm.
- Capable of scanning in several azimuth plane scan modes: fixed (FAP) or crosstrack, rotating azimuth plane (RAP), programmable (PAP).
- Coincident Cloud and Aerosol Properties from MODIS/VIRS

Instantaneous Fluxes at TOA and Angular Distribution Models

$$F(\theta_o) = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} L(\theta_o, \theta, \phi) \cos\theta \sin\theta d\theta d\phi$$

TOA flux estimate from CERES radiance:

$$\hat{F}(\theta_o, \theta, \phi) = \frac{\pi L(\theta_o, \theta, \phi)}{R_j(\theta_o, \theta, \phi)}$$

where,

$$R_{j}(\theta_{o},\theta,\phi) = \frac{\pi L_{j}(\theta_{o},\theta,\phi)}{\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} L_{j}(\theta_{o},\theta,\phi) \cos\theta \sin\theta \ d\theta d\phi}$$

 $R_j(\theta_o, \theta, \phi)$ is the Angular Distribution Model (ADM) for the "jth" scene type.

CERES Single Scanner Footprint (SSF) Product

- Coincident CERES radiances and imager-based cloud and aerosol properties (including MOD04 and NOAA-NESDIS aerosol products).
- Use VIRS (TRMM) or MODIS (Terra, Aqua) to determine the following parameters in up to 2 cloud layers over every CERES FOV:

Macrophysical: Fractional coverage, Height, Radiating Temperature, Pressure

Microphysical: Phase, Optical Depth, Particle Size, Water Path

Clear Area : Skin Temperature, Aerosol optical depth, Emissivity

NEW MERGED CERES-MISR-MODIS DATASET

CERES and MISR teams are working together to produce the first merged CERES-MISR-MODIS dataset.

Contains all CERES-MODIS parameters on the CERES SSF product and all available MISR radiances (9 angles and 4 channels) averaged over every CERES footprint.

⇒ Can be extended to include other MISR and MODIS derived parameters

CERES/Terra Shortwave ADMs for Different Scene Types

Scene Type	Description			
Clear Ocean	Function of wind speed; Correction for aerosol optical depth included.			
Cloud Ocean	Function of cloud phase; Continuous function of cloud fraction and cloud optical depth (5-parameter sigmoid).			
Land & Desert Clear	1° regional monthly ADMs using Analytical Function of TOA BRDF (Ahmad and Deering, 1992).			
Land & Desert Cloud	Function of cloud phase; continuous function of cloud cover and cloud optical depth; uses 1°-regional clear-sky BRDFs to account for background albedo.			
Permanent Snow	Cloud Fraction, Surface Brightness, cloud optical depth			
Fresh Snow	Cloud Fraction, Surface Brightness, Snow Fraction, cloud optical depth			
Sea-Ice	Cloud Fraction, Surface Brightness, Ice Fraction, cloud optical depth			

SW Anisotropy of Liquid Water Clouds from CERES Terra

Uncertainty in Regional Mean SW TOA Flux: CERES ADMs vs 1D Theory

Approach

- i) Construct 10°x10° latitude-longitude regional ADMs by season (e.g., DJF, JJA) from:
 - i) Measured CERES radiances
 - ii) Radiance predicted by CERES ADMs
 - iii) Radiance predicted by 1D theory
- ii) Apply all 3 regional ADMs to determine fluxes from the same data.
- iii) Determine regional mean error in SW TOA flux.

Perform above steps separately for: liquid water clouds, ice clouds and all-sky.

1D Model Assumptions

$$I_{1D}(\theta_o, \theta, \phi) = (1 - f) I_{CER}^{clr}(\theta_o, \theta, \phi) + f I_{1D}^{ovc}(\theta_o, \theta, \phi; \tau, P)$$

```
f = Cloud Fraction
```

 I_{CER}^{clr} = Clear-sky radiance from CERES ADMs

 I_{1D}^{ovc} = Overcast radiance from 1D theory

P = Cloud Phase (liquid or ice)

 τ = Cloud Optical Depth

RT Model: Nakajima rstar5b

Cloud Properties:

Liquid water: $r_e = 10 \mu m$; fixed cloud-top height 2 km

Ice Clouds: nonspherical; mix of crystal types (Ping Yang).

Regional Mean SW TOA Flux Error – Liquid Water Clouds (JJA)

Regional Mean SW TOA Flux Error – Liquid Water Clouds (DJF)

Regional Mean SW TOA Flux Error – Ice Clouds (JJA)

Regional Mean SW TOA Flux Error – Ice Clouds (DJF)

Zonal Distribution of SW TOA Flux Errors (Liquid Water Clouds)

Zonal Distribution of SW TOA Flux Errors (Ice Clouds)

Global SW TOA Flux Error Over Ocean

	JJA		DJF	
	1D Theory	CERES ADM	1D Theory	CERES ADM
	(W m ⁻²)			
Liq H ₂ O Cld	3.3	-0.29	3.6	0.31
Ice Cld	1.9	-0.35	3.4	-0.53
All-Sky	2.6	-0.28	3.3	0.14

SW TOA Flux Error by Latitude and Viewing Zenith Angle (DJF 2000-2001)

Albedo by Latitude and Viewing Zenith Angle (Comparison with ERBE ADMs)

Summary

- Bias in SW TOA flux (oceans) from 1D ADMs is 3 W m⁻² compared to 0.3 W m⁻² from CERES ADMs.
- 1D SW TOA flux bias depends systematically on latitude (solar zenith angle), especially for liquid water clouds.
 - => small negative bias in tropics and large positive bias (10-15 W m⁻²) in midlatitudes.
- No noticeable viewing zenith angle dependence in TOA albedo from the new CERES ADMs.